Doubly morphologically conditioned phonology in Cophonologies by Phase

Hannah Sande

May 2019

1 Introduction

Observation: Phonological alternations across languages may be sensitive to the presence of a morpheme or lexical item. Here I show that there are also alternations that apply only when *multiple* specific morphemes are present.

• I refer to such alternations as doubly morphologically conditioned phonology.

Challenge: Extant frameworks account for morphologically conditioned phonology, but have trouble preventing an alternation in the presence of just one of the two triggers.

Goals:

- 1. Describe two doubly morphologically conditioned phonological alternations in two typologically distinct languages.
 - Sacapultec (Mayan, Guatemala)
 - Guébie (Kru, Côte d'Ivoire)
- 2. Determine an ideal model to account for these and other cases of doubly morphologically conditioned phonology.
 - I show that Cophonologies by Phase (Sande and Jenks, 2018; Sande, 2019) can account for doubly conditioned alternations in a straightforward way.
 - * Cophonologies by Phase (CBP): a model of constraint weight readjustments associated with particular morphemes (**cophonologies**) which scope over spell-out domains, or syntactic phases (**by phase**).

2 Doubly conditioned lengthening in Sacapultec

The data:

- The data presented comes from a descriptive grammar of Sacapultec (Sacapultek, Sacapulteco) (DuBois, 1981).
 - Three primary speakers, all male
 - Collected during fieldwork in Sacapulas in 1974 and 1977

2.1 The puzzle

- In Sacapultec, the final root vowel in some nouns lengthens when preceded by a possessive prefix (1a-h).
- Other nouns fail to show this lengthening process (1i-k).
- Some nouns have final long vowels by default (11-m), and the lengthening process can lead to neutralization between roots with underlyingly short and long vowels, (1f) versus (1m).

(1) Sacapultec lengthening (DuBois, 1981, 184-189)

	Noun	1sg.poss-Noun	
a.	ak'	w-a:k'	'my chicken'
b.	ab'ax	w-ub'a:x	'my rock'
c.	ilib'-at∫	w-iliːb'	'my daughter-in-law'
d.	mulol	ni-mulu:l	'my gourd'
e.	t∫'e?	ni-t∫'iː?	'my dog'
f.	t∫ax	ni-t∫a:x	'my pine'
g.	kumat∫	ni-kuma : t∫	'my snake'
h.	xalom-ax	ni-xaloːm	'my head'
i.	ot∫'	w-ot∫'	'my possum'
j.	am	w-am	'my spider'
k.	we?	ni-we?	'my head hair'
l.	t∫aːk	ni-t∫a ː k	'my work'
m.	t∫axx	ni-t∫axx	'my ashes'

• Lengthening fails to occur in the presence of other affixes (2).

(2) Stative predicate prefixes (DuBois, 1981, 181-182)

	Noun		Stative-Noun
a. winaq	'person'	in-winaq,	'I am a person'
		*in-wina:q	
b. ak'	'chicken'	in-ak',	'I am a chicken'
		*in-a:k'	

• Both a lexical item of the alternating class and a possessive prefix must be present for final-vowel lengthening to apply in Sacapultec.

(3) Distribution of Sacapultec final vowel lengthening

	Alternating root	Non-alternating root
Possessive	√	_
Non-possessive	_	_

• Similar phonological processes in the presence of possession are seen across Mayan (Bennett, 2016).

2.2 The analysis

• I analyze doubly conditioned phenomena with a weighted constraint phonological grammar which applies at syntactic phase boundaries via Cophonologies by Phase.

- Major assumptions of CBP:

- * Spell-out, including phonological evaluation, applies at phase boundaries (Chomsky, 2000, 2001; Pak, 2008; Jenks and Rose, 2015; Sande, 2017; Kastner, 2019).
- * Phase heads include at least Voice, C, and D (Chomsky, 2000, 2001; Marvin, 2002).
 - **Prediction 1:** Morpheme-specific phonological specifications will only affect material spelled out within the same phase as the trigger morpheme, and not hierarchically higher material (Sande and Jenks, 2018).
 - **Prediction 2:** The domain of application of morpheme-specific phonology will align with phase boundaries (which could be smaller or larger than a word), and not stem or word boundaries (Sande, 2019; Sande et al., 2019).
- * Vocabulary items are inserted late in the derivation, as in Distributed Morphology (Halle and Marantz, 1993).
- * Phonological evaluation involves weighted constraints via Harmonic Grammar (Legendre et al., 1990; Smolensky and Legendre, 2006).
- * Vocabulary items can be associated with constraint-weight readjustments, \mathcal{R} , that affect the phonological evaluation of the phase containing them (Sande and Jenks, 2018; Sande, 2019).
 - **Prediction 3:** Multiple morpheme-specific constraint weight readjustments in the same phase can interact.
- The relevant constraints in accounting for Sacapultec lengthening are these:
 - (4) DEP: Assign a violation for each segment in the output that does not have a corresponding input segment. (McCarthy and Prince, 1993)
 - (5) FINALLENGTHENING: Assign a violation when the final vowel in a phonological word is short.

(6) Default weights in Sacapultec

Constraint	Weight
Dep	2
FinalLength	.5

• The syntactic structure is provided in (7), where D is assumed to be a phase head.

(7) Syntactic structure

• When a non-alternating root is present, its vocabulary item is inserted.

(8) Non-alternating vocabulary item

$$- \sqrt{am} \longleftrightarrow \begin{cases} \mathcal{F} : & am \\ \mathcal{P} : & [\omega X] \\ \mathcal{R} : & \emptyset \end{cases}$$

• There is no \mathcal{R} specification affecting the weights of constraints, so the default grammar applies to the phase domain containing \sqrt{am} , and the faithful candidate surfaces.

(9) Phonological evaluation of a Sacapultec non-alternating root in non-possessive contexts

/am/	DEP	FINALLENGTH	
	2	.5	H
a. ☞[ω am]		1	.5
b. $[_{\omega} \text{ a:m}]$	1		2

• Possessive prefixes and alternating roots are associated with constraint weight readjustments as part of their vocabulary entry.

(10) Sacapultec vocabulary items

$$- [D, 1SG, POSSESSIVE] \longleftrightarrow \begin{cases} \mathcal{F} : & w \\ \mathcal{P} : & [_{\omega}X - V] \\ \mathcal{R} : FINALLENGTH^{+1} \end{cases}$$

$$- \sqrt{ak'} \longleftrightarrow \begin{cases} \mathcal{F} : & ak' \\ \mathcal{P} : & [_{\omega}X] \\ \mathcal{R} : & DEP^{-1} \end{cases}$$

• When only one of the triggering morphemes is present in a phase, its \mathcal{R} specification is not strong enough to have an effect.

(11) Phonological evaluation of possessive \mathbf{D} + non-alternating root

/w-am/	Dep 2	FINALLENGTH 1.5	Н
a. $\mathbb{P}[_{\omega} \text{ wam}]$		1	1.5
b. $[_{\omega} \text{ wa:m}]$	1		2

(12) Phonological evaluation of alternating root in non-possessive contexts

/in-ak'/	DEP	FINALLENGTH	
	1	.5	H
a. \square [ω inak']		1	.5
b. $[_{\omega} \text{ ina:k'}]$	1		1

• Only when both are present in the same phase domain will their cumulative effects result in the lengthening candidate being optimal.

(13) Phonological evaluation of a Sacapultec alternating root in possessive contexts

/ w-ak'/	Dep	FINALLENGTH	
	1	1.5	H
a. $[\omega \text{ wak'}]$		1	1.5
b. $\mathfrak{P}[_{\omega} \text{ wa:k'}]$	1		1

• The result is final vowel lengthening only in the presence of both an alternating root and a possessive prefix.

3 Doubly conditioned harmony in Guébie

The data:

- The data presented here was collected with Guébie speakers in Gnagbodougnoa, Côte d'Ivoire from 2013 through 2018.
 - Six speakers, ages 19-76
 - One woman, five men
 - Combination of text and elicitation

3.1 The puzzle

• In Guébie, root vowels show complete vowel harmony with affixes.

(14) Full vowel harmony

a.
$$5^3$$
 bala^{3.3}
3SG.NOM hit.PFV
'She hit'

b.
$$5^3$$
 bol= $5^{3.2}$ 3SG.NOM hit.PFV-3SG.ACC 'She hit her'

• This process only applies in the presence of about certain enclitics or suffixes, namely third-person object markers on verbs, and plural suffixes on nouns.

(15) Guébie object markers

Human			Non-human	
	Singular	Plural	Singular	Plural
1st		a^1 , ane ^{1.1}		
	$\mathbf{d} \mid \mathbf{e}^1, \mathbf{m} \mathbf{\epsilon}^2$	a^2 , an $\epsilon^{2.2}$	_	_
3rc	$\mathbf{d} \mid \mathfrak{I}^2$	wa^2	$\epsilon^2, a^2, \sigma^2$	I^2,wa^2

(16) All third-person object markers trigger harmony

	Verb	Object	Verb+Obj	Gloss
a.	jili ^{2.3}	$=$ \mathfrak{I}^2	jɔl=ɔ ^{2.32} , *jil=ɔ ^{2.32}	'steal him'
b.	$ m jili^{2.3}$	$=\varepsilon^2$	$j\epsilon l=\epsilon^{2.32}, *jil=\epsilon^{2.32}$	'steal it'
c.	$ m jili^{2.3}$	$=I^2$	$jil=i^{2.32}, *jil=i^{2.32}$	'steal them'
	jıla ^{3.2}	$=$ \mathfrak{I}^2	jɔl=ɔ ^{3.2} , *jɪl=ɔ ^{3.2}	'ask him'
e.	$ m jıla^{3.2}$	$=\varepsilon^2$	$j\epsilon l=\epsilon^{3.2}, *jil=\epsilon^{3.2}$	'ask it'
f.	$ m jıla^{3.2}$	$=I^2$	$jil=i^{3.2}, *jil=i^{3.2}$	'ask them'
g.	bala ^{3.3}	$=$ \mathfrak{I}^2	$bol = 0^{3.2}, *bal = 0^{3.2}$	'hit him'
h.	$\mathrm{bala^{3.3}}$	$=\varepsilon^2$	$b\varepsilon l = \varepsilon^{3.2}, *bal = \varepsilon^{3.2}$	'hit it'
i.	$\mathrm{bala}^{3.3}$	$=$ \mathbf{I}^2	$bil=i^{3.2}$, * $bal=i^{3.2}$	'hit them'

(17) Full harmony in plural contexts

	Singular	Plural	Gloss
a.	$6ele^{2.2}$	6il-i ^{2.2}	'cow'
b.	mɛnɛ ^{3.3}	man-a ^{3.2}	'animal'

- Other phonologically identical affixes do not trigger harmony.
 - Recall that the shape of the 3sg. HUM object enclitic is $[5^2]$.
 - The passive suffix, which is phonologically identical, does not trigger harmony (18).

(18) No harmony in passive contexts Verb Verb+Pass Glo

	Verb	Verb+Pass	Gloss
a.	bala ^{3.3}	bal-5 ^{3.2} , *b5l-5 ^{3.3.2}	'be hit'
b.	$\mathrm{jrla}^{3.2}$	jɪl-ɔ ^{3.2} , *jɔl-ɔ ^{3.2.2}	'be asked'

• Morphemes that attach outside the object enclitic or plural suffix fail to undergo harmony.

(19) Root+Obj+Nominalizer

	\mathbf{Root}	=3sg.acc	=nmlz	
a.	$\mathrm{bala}^{3.3}$	$bol=0^{3.2}$	$bol=o=li^{3.2.2}$	'hit'
b.	$\mathrm{tulu}^{4.4}$	$tol = 5^{4.2}$	$tol=0=li^{4.2.2}$	'chase'
c.	$ m jıla^{3.2}$	$jol=o^{3.2}$	$j_0 = j_0 = l_0 $	'ask'

(20) Root+Pl+Definite

	Singular			\mathbf{Gloss}
a.	$6ele^{2.2}$	6il-i ^{2.2}	6il-i-a ^{2.2.2}	'cow'
b.	m ϵ n $\epsilon^{3.3}$	$man-a^{3.2}$	$man-a-a^{3.2.2}$	'animal'

- Harmony is also sensitive to the specific lexical item present.
 - Only about 33.5% of roots undergo harmony, based on a corpus of 1839 disyllabic roots, where 614 of them are subject to full vowel harmony.
 - The subset of roots affected by full vowel harmony does not form a semantic or phonological natural class.

- * Phonologically, there is a tendency for roots that undergo full harmony to be of the shape CVCV, where the second C is /l/, and where the two vowels are identical.
- * However, no set of phonological traits exhaustively and exclusively picks out the correct set of roots.
 - · For example, there are minimal pairs like jili^{2,2} 'be fat', which undergoes harmony, and jili^{2,2}, 'fish', which does not.
- * Semantically, there is no coherent feature of verbal or nominal roots that picks out all and only the roots that alternate.
 - · For example, $\eta^w \text{ono}^{4.4}$, 'woman', and $\text{pokpo}^{3.1}$ 'person', undergo full harmony, while $\eta \text{udi}^{3.1}$, 'man', does not.
- Full harmony only applies in Guébie when both an alternating root and triggering morpheme are present in the same phase domain.

(21) Distribution of doubly conditioned harmony

	Object enclitic	Passive
Alternating rt	Harmony	No harmony
Non-alternating rt	No harmony	No harmony

3.2 The analysis

- By adopting the CBP, we can account for doubly conditioned harmony in Guébie in the same way as doubly conditioned lengthening in Sacapultec:
 - Via cumulative morpheme-specific constraint-weight adjustments within a syntactic phase domain.
- The relevant constraints are below, where harmony is motivated by an Agreement-by-Projection constraint (Hansson, 2014; Walker, 2016; Lionnet, 2016, 2017).
 - (22) IDENT-IO(V): Assign one violation if an output vowel's features differ from the corresponding input segment.
 - (23) $*[\alpha \mathbf{F}][\beta \mathbf{F}]_{[+syllabic]}$ (Abbreviated VHARM(ONY)) A segment with a given set of feature values may not directly precede another segment with a different set of feature values in the ordered set of output segments that are [+syllabic]. Assign one violation for each output form where at least one pair of vowels consonants meets these criteria.

(24) Default weights for suffix-triggered harmony

Constraint	Weight
IDENT-V	3
VHARM	.5

• When neither an alternating root nor triggering morpheme is present, the default grammar will apply, resulting in the faithful (non-harmony) candidate.

(25) Non-alternating root + passive: No harmony

/ʒʊla ^{3.2} =ɔ ² /	IDENT-V 3	VHARMONY .5	Н
a. 🔊 [ω τυl ³ =ɔ ²]		1	.5
b. $[_{\omega} \operatorname{fol}^3 = \mathfrak{o}^2]$	1		3

 \bullet However, both object markers (and plural suffixes) and alternating roots are associated with \mathcal{R} specifications.

(26) Object marker vocabulary item

$$[3sg.hum.acc] \longleftrightarrow \begin{cases} \mathcal{F} : & /\mathfrak{I}^2/\\ \mathcal{P} : & [=X]_{\omega}\\ \mathcal{R} : & VHARM^{+1.5}, IDENT-V^{-.5} \end{cases}$$

(27) Alternating root vocabulary item

$$[\sqrt{hit}] \longleftrightarrow \begin{cases} \mathcal{F} : & /\text{bala}^{3.3}/\\ \mathcal{P} : & [X_{\omega}]\\ \mathcal{R} : & \text{VHARMONY}^{+1}, \text{IDENT-V}^{-1} \end{cases}$$

• When one of the two is present, the weight readjustments are not strong enough to result in harmony.

(28) Alternating root + passive: No harmony

$/_{\omega}$ bala ^{3.3} = $\sigma^2/$	IDENT-V	VHARMONY	H
	2	1.5	
a. $\mathbb{F}[_{\omega} \text{ bal}^3 = \mathfrak{I}^2]$		1	1.5
b. $[_{\omega} \text{ bol}^3 = \text{o}^2]$	1		2

(29) Non-alternating root + object enclitic: No harmony

$/_{\omega}$ Jula ^{3.2} =5 ² /	IDENT-V 2.5	VHARMONY 2	Н
a. 🕸 [ω τυl ³ =ɔ ²]		1	2
b. $[_{\omega} \operatorname{fol}^3 = \mathfrak{d}^2]$	1		2.5

• However, when both are present, the candidate showing full vowel harmony is optimal.

(30) Alternating root + object enclitic: Harmony

$/_{\omega}$ bala ^{3.3} = $\mathfrak{z}^2/$	VHARMONY	IDENT-V	H
	3	1.5	
a. $[_{\omega} \text{ bal}^3 = \text{p}^2]$	1		3
b. $\mathfrak{p}[_{\omega} \text{ bol}^3 = \mathfrak{p}^2]$		1	1.5

- The combined effect of two reweightings, both present in the same spell-out domain results in full vowel harmony only when both of the following are present:
 - 1. A plural suffix or object enclitic
 - 2. An alternating root
- The locality effects of outer affixes not undergoing harmony (19, 20) is accounted for by intervening phase boundaries.

4 Alternative analyses

This section considers three alternative approaches to morphologically conditioned phonology, and how they might account for (or fail to account for) double morphological conditioning.

• Representational accounts

- Debate: Item-based versus process-based morphologically conditioned phonology Hockett (1954); Anderson (1992)
- Item-based approaches assume that all morphemes are associated with an underlying representation from which the surface form is derived.
 - * A strictly item-based approach might say that the possessive morpheme in Sacapultec, for example, is associated with a floating mora or vowel.
 - * Then, phonological rules or constraints determine where that floating mora or vowel surfaces.
- Problem: We would need to ensure that the floating mora is only present, or only has a surface effect, in the presence of both a possessive prefix and an alternating root.

• Stratal OT

- Stratal OT is quite good at accounting for locality effects of word-internal morphologically conditioned phonology.
- A stem-specific phonological grammar applies to the root plus stem-level affixes.
- Then, word-level phonology applies to the stem plus word-level affixes.
 - * **Problem:** Multiple grammars cannot target particular morphemes or lexical items, but can only be sensitive to stem- versus word- versus phrase-level phenomena.
 - * If the possessive prefix in Sacapultec is a stem-level affix, we expect stem-level phonology (lengthening) to apply to all possessive stems, but it doesn't.

• Indexed Constraint Theory

- A weighted version of Indexed Constraint Theory (ICT), allowing for local constraint conjunction and/or 'gang' effects (Smolensky and Legendre, 2006; Pater, 2010; Shih, 2016) is perhaps the best possible alternative analysis.
 - * With constraints indexed to particular morphemes, violations are incurred only when said morpheme is present: VHARM(OBJ, PL), VHARM(ALTERNATINGCLASS).
 - * Only when both indexed VHARM constraints would otherwise be violated do we see harmony surfacing.
- Problem: ICT assumes a single phonological grammar, which applies globally to a word, so when both triggering morphemes are present, we expect harmony everywhere.

- * Recall that harmony does not apply to all vowels within a word when both triggering morphemes are present, only to vowels inside the first phase domain: bol=o=li^{3.2.2}, Rt+Obj+NMLZ
- * ICT would predict full harmony on all vowels in a word: *bol=o=lo^{3.2.2}.
- * In general, locality effects of morpheme-specific phonology are difficult to model with ICT.
- * Also, CBP, unlike ICT, does away with the duplication effect, where there are multiple copies of each constraint in CON.

5 Conclusions

- Phonological alternations can be sensitive to the presence of more than one specific morpheme in a spell-out domain.
 - Doubly morphologically conditioned phonology seems to be a wide-spread phenomenon, though not previously been discussed in these terms.
 - * Siouan ablaut (Jones, 1992; Rankin, 1995; Graczyk, 1996, 2007; Albright, 2002)
 - * Panoan truncation (Emily Clem and Kelsey Neely, p.c.)
 - * Ticuna truncation (Amalia Skilton, p.c.)
 - * Dogon tonal overlays (Heath, 2015)
 - * Seenku tone Sandhi (McPherson, 2019)
 - * Ende reduplication (Lindsey, 2019)
- Cophonologies by Phase, developed to model cross-word morpheme-specific phonological effects and category-specific phonology, straightforwardly accounts for doubly conditioned phonology.
 - Predictions about locality: Only two elements introduced within the same syntactic phase should be able to trigger doubly conditioned phonology.

References

Albright, Adam. 2002. A restricted model of UR discovery: Evidence from Lakhota. Ms, University of California at Santa Cruz.

Anderson, Stephen R. 1992. A-morphous morphology. Cambridge: Cambridge University Press.

Bennett, Ryan. 2016. Mayan phonology. Language and Linguistics Compass 10:469–514.

Chomsky, Noam. 2000. Minimalist inquiries: the framework. In *Step by step: Essays on minimalist syntax in honor of howard lasnik*, ed. Roger Martin, David Michaels, and Juan Uriagereka, 89–155. MIT press: Cambridge, MA.

Chomsky, Noam. 2001. Derivation by phase. In *Ken Hale: A life in language*, ed. Michael Kenstowicz, 1–52. Cambridge, MA: MIT Press.

- DuBois, John. 1981. The sacapultec language. Doctoral Dissertation, UC Berkeley.
- Graczyk, Randolph. 1996. On ablaut in Crow. AAA annual meeting.
- Graczyk, Randolph. 2007. A grammar of Crow. University of Nebraska Press.
- Halle, Morris, and Alec Marantz. 1993. Distributed Morphology and the pieces of inflection. In *The view from building 20*, ed. Kenneth Hale and Samuel Jay Keyser, 111–176. Cambridge, Massachusetts: MIT Press.
- Hansson, Gunnar Olafur. 2014. (dis)agreement by (non)correspondence: Inspecting the foundations. *Presentation at the ABC Conference*, *UC Berkeley*.
- Heath, Jeffrey. 2015. Dogon noncompositional constructional tonosyntax. *Journal of African Languages and Linguistics* 36:233–252.
- Hockett, Charles F. 1954. Two models of grammatical description. Word 10:210–234.
- Jenks, Peter, and Sharon Rose. 2015. Mobile object markers in Moro: The role of tone. Language 91:269–307.
- Jones, A Wesley. 1992. The Hidatsa "approximative": Morphology, phonology, semantics: And an approximate look at ablaut. *Anthropological Linguistics* 324–337.
- Kastner, Itamar. 2019. Templatic morphology as an emergent property: Roots and functional heads in Hebrew. *Natural Language and Linguistic Theory* 1–49.
- Legendre, Géraldine, Yoshiro Miyata, and Paul Smolensky. 1990. Can connectionism contribute to syntax? harmonic grammar, with an application. In *Proceedings of the 26th regional meeting*, ed. M. Ziolkowski, M. Noske, and K. Deaton.
- Lindsey, Kate Lynn. 2019. Ghosts and gradience in phonology. Doctoral Dissertation, Stanford University.
- Lionnet, Florian. 2016. Subphonemic teamwork: A typology and theory of cumulative coarticulatory effects in phonology. Doctoral dissertation, UC Berkeley.
- Lionnet, Florian. 2017. A theory of subfeatural representations: the case of rounding harmony in Laal. *Phonology* 34:523–564.
- Marvin, Tatjana. 2002. Topics in the stress and syntax of words. Doctoral Dissertation, Massachusetts Institute of Technology.
- McCarthy, John J, and Alan Prince. 1993. Generalized alignment. Springer.
- McPherson, Laura. 2019. Seenku argument-head tone sandhi: Allomorph selection in a cyclic grammar. Glossa: a journal of general linguistics 4.
- Pak, Marjorie. 2008. The postsyntactic derivation and its phonological reflexes. Doctoral Dissertation, University of Pennsylvania.
- Pater, Joe. 2010. Morpheme-specific phonology: Constraint indexation and inconsistency resolution. In *Phonological argumentation: Essays on evidence and motivation*, ed. Steve Parker, 123–154. London: Equinox.

- Rankin, Robert L. 1995. On Quapaw (and Siouan) ablaut. Paper presented at the Siouan and Caddoan Languages Conference.
- Sande, Hannah. 2017. Distributing morphologically conditioned phonology: Three case studies from Guébie. Doctoral Dissertation, UC Berkeley.
- Sande, Hannah. 2019. A unified account of conditioned phonological alternations: Evidence from Guébie.
- Sande, Hannah, and Peter Jenks. 2018. Cophonologies by phase. NELS 48 Proceedings.
- Sande, Hannah, Peter Jenks, and Sharon Inkelas. 2019. Cophonologies by ph(r)ase. Ms., Georgetown University.
- Shih, Stephanie S. 2016. Super additive similarity in Dioula tone harmony. In West Coast Conference on Formal Linguistics (WCCFL), volume 33, 361.
- Smolensky, Paul, and Géraldine Legendre. 2006. The harmonic mind: From neural computation to optimality-theoretic grammar. Cambridge, MA: MIT press.
- Walker, Rachel. 2016. Surface correspondence and discrete harmony triggers. In *Proceedings of the Annual Meetings on Phonology*, volume 2.